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Recent progress in self-driving capabilities of cars suggests that one could also automate
aircraft taxi operations, a seemingly easier problem. In this paper we describe a high-level
software architecture for self-taxiing, and we identify its specific challenges. The architecture
is selected to ease the mapping of specifications to the different implemented functionalities,
allowing for modular verification. We then focus on two of the modules in this architecture.
We describe how to obtain a low-level list of taxiways from high-level Air Traffic Control
instructions, and how to design GPS-based controllers for lateral and longitudinal control
of the aircraft. This architecture is implemented in simulation based on the X-Plane flight
simulator, for which different controllers for one of the low-level functionalities is evaluated
using falsification tools S-TaLiRo and Breach.

I. Introduction
Commercial air transport has become extremely safe, and 2017 was called the safest year on record for passenger air

travel, with no commercial passenger jet fatalities that year. As impressive as this feat is, it hides the fact that airline
operations still resulted in the death of 35 people on the ground [1]. Therefore, while air travel is extremely safe for
passengers, ground workers loading and maintaining aircraft still have a dangerous job. In fact, ground operations
involve several types of vehicles operating in close proximity to each other, all driven or taxied by human operators, in
an environment where human errors can cause grave accidents.

With the aircraft systems becomingmore andmore complex, the pilot workload increases proportionally. Autonomous
systems can reduce the pilot workload by reducing the amount of information displayed to the pilots and helping them
focus on critical tasks. While autopilots have been used for decades for air operations of aircraft, comparatively much
less attention has been devoted to automating their ground operations, and today airliners are still taxied by hand from
their gate to the runway. Autonomous taxiing of aircraft is attractive because it has the potential of being safer than
manual taxiing and avoid runway incursions, taxiing mistakes, as well as collisions with other ground vehicles on the
ramp, especially in congested airports where maintaining situational awareness is hard. Additionally, it can free up
pilot’s minds so they can focus on safety-critical aspects or getting ready for the flight.

The problem of avoiding runway incursions has been well-studied, see [2], and [3] for a survey. If done correctly,
self-taxiing could significantly reduce or even eliminate such runway incursions. Recently, Liu and Ferrari [4] have
studied a related problem for autonomous taxiing. Their focus is on vision-based algorithms, and their modeling of
the airport as a graph is closely related to ours. However, their approach is more quantitative rather than focusing on
certification and constraint satisfaction.

A main challenge for aerospace systems, whether it be for in-air or on-ground operations, is to ensure the system
meets its specification. Standard processes are defined for both systems and software to ensure any errors are discovered
during development. As the autonomy of systems increases, in particular by utilizing algorithms that have adaptive
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behavior, the verification is non-trivial. As a solution, one approach is to use a correct-by-construction approach
combined with the use of formal methods to detect any gaps during design time [5–7].

In this paper, we describe a proposed high-level architecture for autonomous taxiing of aircraft. We describe our
implementation of a path planner and controller, that we ran on taxiing examples in the X-Plane flight simulator. Within
this architecture, several low-level path following controllers are implemented and their performance is evaluated
using falsification techniques to identify corner-cases and the amount of inaccuracy in sensing/perception that different
controllers can or cannot handle.

II. Software architecture
A schematic of the proposed autonomous taxiing architecture is shown in Figure 1. At the highest-level of the

architecture, we have the Air Traffic Control (ATC) route validation modules. These modules combine information
about the airport map and the aircraft taxiway design group to reason about the validity of the command from the
ATC. The goal is to ensure that the instructions on the taxiways to be followed are feasible and unambiguous. At the
middle-level the route information is combined with the taxiway geometry to generate a path to be followed by the
aircraft. The lower-level then aims to control the aircraft motion to ensure that the generated path is followed with a
specified accuracy. Finally, there are sensing modules that generate localization and state information for the low-level
controllers. In this work, we consider GPS as a sensor that provides precise state information, but the sensing module
can be realized by other types of sensors and corresponding perception, sensor-processing algorithms. The architecture
can also be expanded to allow for exception handling at the middle and lower-levels if following the ATC-specified
route becomes infeasible due to unexpected external factors (e.g., obstacles or other aircraft on the taxiway) or internal
failures (e.g., problems with the aircraft subsystems). This last aspect is not considered in the current work.

There are several specifications set by the Federal Aviation Administration (FAA) that pilots should follow with
regard to taxiing. These specifications can be summarized as follows:

• High level specifications: ATC sends a route, pilot confirms the route and proceeds; if there is a problem (e.g.,
another plane or ground vehicle blocking the way) in following the route, the pilot gets the plane to a stop and
notifies ATC.

• Low level lateral specifications: Pilot should ensure “cockpit over centerline" taxiing [8]; they should follow the
lane markings to ensure the satisfaction of this specification.

• Low level longitudinal specifications: Pilot should obey several speed limits, depending on whether the plane
is on a straight taxiway or on a turn. Moreover, he/she needs to put the plane to a full stop before entering a
runway (such runway entrances are appropriately marked). FAA guidance also recommends applying brakes
intermittently rather than continuously to avoid wear and tear on the brakes and to avoid excessive heating.

• Sensing specifications: When this functionality is to be accomplished by an autonomous system, detection of
the lane markings and other entities on the taxiways, becomes a crucial part of the functionality. An acceptable
autonomous taxiing system should have a reliable sensing and perception system to allow proper localization of
the aircraft (and other entities) on the taxiway.

We can map these specifications to different parts of the architecture as shown in Figure 1. The choice of the architecture
presents a separation of concerns in terms of specifications. Several emergency handling requirements can also be
associated with the low-level lateral and longitudinal control, such as avoiding collisions with unexpected obstacles and
with other aircraft, when exception handling modules are added to the architecture.

In what follows, we describe specific components of the architecture for autonomous taxiing together with a prototype
implementation that interfaces with the X-Plane flight simulator. This is followed by applying falsification analysis to
low-level controllers developed to identify their domain of safety, i.e., the set of initial conditions from which they can
ensure the satisfaction of the specifications relevant to their functionality.

III. Air traffic control route validation
When taxiing at an airport with a control tower, pilots have access to two main sources of information: a ground

map of the airport, such as the one in Fig. 2 representing the Ann Arbor airport, including all its runways and taxiways;
and a list of instructions from ATC, consisting of a list of taxiways, followed by a destination. Given these instructions,
the pilot (or an automated system) needs to determine their path to arrive safely and accurately at their destination.
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Fig. 1 Proposed architecture

For example, on the layout of Fig. 2, an airplane currently at the North-West hangars (top left, vertex Ch) can receive
an instruction from the control to “Taxi Charlie Bravo Alpha Alpha-3 to holding point runway 6”, meaning that it should
follow taxiways C (Charlie), B (Bravo), A (Alpha) and A3 (Alpha-3) to the beginning of runway 6 (point A3r). The
low-level path is to follow taxiway C to point BC, then taxiway B to point AB and taxiway A to point AA3, and finally
the short stretch of taxiway A3 to point A3r. The four contiguous taxiway branches followed by the aircraft would thus
be Ch-BC, BC-AB, AB-AA3, and AA3-A3r. Determining those low-level taxiway branches from the high-level ATC
description automatically, or determining potential problems in the instructions, is the goal of the module developed
in this section. The Ann Arbor example might seem trivial, but on bigger airports such as Detroit Metropolitan [10],
finding the accurate path may be much more difficult and prone to error.

An important factor is that not every aircraft can go on every taxiway: due to size or weight, bigger aircraft are
unable to use smaller taxiways. Taxiways are grouped in Taxiway Design Groups (TDG) [8], that are defined by the FAA
and determine which aircraft can use which taxiway. The FAA currently defines eight taxiway design groups: TDG-1A,
TDG-1B, TDG-2, TDG-3, TDG-4, TDG-5, TDG-6, and TDG-7, from the smallest aircraft to the biggest aicraft. Any
aircraft of a certain TDG can use all taxiways rated for this TDG, as well as all taxiways rated for a higher TDG.

On large airports, finding the correct sequence of taxiways to follow adds workload in the cockpit, and thus
automating this task enables a reduction of pilot workload, so that more attention can be paid on other tasks. Moreover,
there could be human errors in providing the taxiway instructions or in perceiving the instructions: air traffic controllers
might make mistakes, pilots might mishear the provided route, or an autonomous system might misinterpret the
command. Therefore, it is important to verify the validity of the routing commands provided by ATC.

Our algorithm proceeds in two phases. From the airport map consisting of an undirected graph of taxiways (Fig. 3),
the first phase builds a directed expanded graph encoding the possible paths of an airplane (Fig. 4). The second phase
then runs an adapted depth-first search algorithm on the directed expanded graph, looking for all possible routes from
the current position to the destination that match the instructions of ATC. If the number of routes is different from
1 (either 0 or greater or equal than 2), the algorithm returns an error, as the path is either nonexistent or ambiguous.
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Fig. 2 Official ground map of the Ann Arbor airport (KARB) (FAA documentation [9]), retrieved December
2019). Superimposed on the FAA map are red vertices representing the different taxiway endpoints and
intersections, which will become vertices in the undirected graph of the taxiways of the airport (Fig. 3).

Otherwise, the (unique) path that was found is returned by the algorithm. Note that the first phase is independent of the
route and can be done once and for all for each airport.

A. Graph representations of airport layout
Given an airport ground layout, a natural way to represent the taxiway structure for a path finding algorithm is as an

undirected graph G of taxiway branches and intersections. For example, for the Ann Arbor airport ground layout of
Fig. 2, the corresponding undirected graph is represented in Fig. 3. For each edge we associate the name of the taxiway,
as well as the TDG of the taxiway (not represented on Fig. 3). This undirected graph also encodes input/output vertices
that are connected to hangars or the ramp (vertices Ch, BC, A1r, A2r and A3r), marked in Fig. 3 with double circles.
However, we cannot run a simple path finding algorithm, because aircraft cannot do a U-turn on taxiways, and because
some turns might be too tight for certain aircraft depending on their TDG.

We therefore build a directed expanded graph D preventing routes requiring an aircraft to turn around. We also
remove from D the taxiways that are not compatible with our aircraft’s taxiway design group. We can build this directed
graph from the undirected graph using Algorithm 1 (assuming all turns to another taxiway are legal, but not U-turns). In
the future, we hope that this directed graph can also be directly provided by the airport authority or the FAA, to include
forbidden turns, depending on the aircraft’s TDG.

The directed expanded graph of Ann Arbor airport is presented in Fig. 4. Intuitively, for two vertices u and v of the
undirected graph G, the aircraft is on the vertex “u from v” of D when the aircraft is on vertex u and just arrived from
vertex v. Keeping track of where the aircraft came from enables the prevention of U-turns. Similarly, the aircraft is on
the vertex “u in” of D when the aircraft just entered the input vertex from the runway or ramp.

Algorithm 1 first removes all taxiways from G that are not compatible in terms of taxiway design groups. Then,
following the intuition above, the algorithm adds a vertex “v in” in D for every input vertex v of G, and a vertex “u from
v” in D for every edge (u, v) of G: an aircraft can only be in vertex “u from v” if it arrived to u from v, hence only if u
and v are connected in G. Finally, an aircraft can only arrive in vertex “v from u” if it was previously in u, that is in any
vertex of the form “u in” or “u from w” in D, provided w , v to explicitly avoid U-turns. For example, on the directed
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Fig. 3 Undirected graph of the taxiways at Ann Arbor airport (KARB). Input vertices (connected to a ramp
or hangars on Fig. 2) are represented with double circles. Note that we chose not to make AA1 an input vertex
to not complicate Fig. 4.

Ch in

A3r in A2r in
A3r from 

AA3

Ch from 
BC

A2r from 
AB

AB from 
A2r

A1r inA1r from 
AA1

AB from 
AA3 

AB from 
BC

BC from 
Ch

BC from 
AB

BC from 
AC

AC from 
AB

AC from 
AA1

AC from 
BC

AA1 
from A1r

AA1 
from AC

AA3 
from A3r

AB from 
AC 

AA3 
from AB

A3 A3 A2
A2

A2 A2 A1 A1

AAA

C

A A
A

A
A

C
C

C

C

C

C

B

B

B

B
B

A

A

A

A

BC in

C C

B

Fig. 4 Directed expanded graph of the taxiways at Ann Arbor airport (KARB).
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Directed-Expanded-Graph(G, tdg)
Data: undirected graph G, aircraft’s taxiway design group tdg
Result: directed expanded graph D
foreach edge e ∈ G do

if tdg(e)<tdg then remove e from G;
end
create D empty directed graph
foreach input vertex v ∈ G do

add vertex “v in” to D
end
foreach vertex u ∈ G do

foreach vertex v ∈ G connected to u do
add vertex “u from v” to D

end
end
foreach undirected edge e = (u, v) ∈ G with taxiway name n do

foreach vertex p ∈ D of the form “u in” or “u from w” for w , v do
add directed edge (p, “v from u”) to D with name n

end
Symmetrically, foreach vertex p ∈ D of the form “v in” or “v from w” for w , u do

add directed edge (p, “u from v”) to D with name n
end

end
return D

Algorithm 1: Generation of directed expanded graph

expanded graph of Ann Arbor airport, the vertex “AB from BC” is accessible from exactly three vertices: “BC in”,
“BC from Ch” and “BC from AC”, because the undirected graph of the airport contains an edge from BC to AB; but
note that there is no edge from vertex “BC from AB” to vertex “AB from BC”. The edges of D are added accordingly,
keeping the same names as in G.

B. Path finding algorithm
From the directed expanded graph G and an instruction of ATC in the form of a list of taxiway names, we now

deduce the explicit path to be followed by the pilot. We note that such an explicit path should exist and also be unique,
otherwise the algorithm should return an error. To achieve this, we build a modified recursive depth-first search on the
directed expanded graph, described in Algorithm 2. At each recursive call, the algorithm keeps track of current and
destination vertices and the list of remaining taxiway names, but also of the current taxiway name. Keeping track of the
current taxiway name enables the repetition of several taxiway branches with the same name, an essential feature of the
algorithm. We assume that inputs and outputs can be a normal value or the special value None, which stands for no
value. We use None to encode that there is no current-taxiway-name initially, and as a result when the Algorithm
has not found a path in this recursive branch. In practice None can typically be implemented using an option type (in
functional languages) or the NULL pointer (in C or C++).

Once we get to a vertex, there are three possibilities: either we have reached our destination and there are no more
taxiways to follow, in which case the empty list of edges should be returned (case (a)); or we stay on another branch of
the current taxiway, with the same name (case (b)); or we turn to a different taxiway (case (c)). In the latter two cases
the algorithm steps one edge and calls itself recursively. We keep track of all valid possibilities in a variable results,
and only return a valid result if this variable is a singleton. If it stays empty, then this branch of the algorithm did not
find a path; more importantly, if results has more than two elements, we found at least two paths, meaning that the
path is not unique and the algorithm should return an error.
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Find-Path-Aux(D, current, destination, taxiway-names, current-taxiway-name)
Data: directed expanded graph D, vertex current∈ D, vertex destination∈ G, ATC instructions as a list of

taxiway names taxiway-names, current taxiway current-taxiway-name
Result: route as a list ` of edges of D
create results := ∅
if vertex current is of the form “destination from w” and taxiway-names = [ ] then
// case (a) where we have arrived at our destination
add the empty list [ ] to results

end
foreach edge e = (current, v) ∈ G do

if current-taxiway-name,None and name(e)=current-taxiway-name then
// case (b) where we stay on the same taxiway
create res := Find-Path-Aux (D, v, destination, taxiway-names, current-taxiway-name) ;
if res,None then add e::res to results ;

end
if name(e)=head(taxiway-names) then
// case (c) where we turn to a different taxiway
create res := Find-Path-Aux (D, v, destination, tail(taxiway-names), head(taxiway-names)) ;
if res,None then add e::res to results ;

end
end
if results = ∅ then return None ;
else if results = {`} then return ` // size(results)= 1;
else return Error “Invalid ATC route” // size(results)≥ 2 ;

Algorithm 2: Path Finding: Auxiliary Recursive Algorithm

Find-Path(G, start, destination, taxiway-names, tdg)
Data: undirected graph G, vertex start∈ G, vertex destination∈ G, ATC instructions as a list of taxiway

names taxiway-names, aircraft’s taxiway design group tdg
Result: route as a list ` of edges
D := Directed-Expanded-Graph(G, tdg)
res := Find-Path-Aux(D, start, destination, taxiway-names, None)
if res, None then return res;
else return Error “Invalid ATC route”;

Algorithm 3: Path Finding: Main Algorithm

Finally, Algorithm 3 puts together Algorithms 1 and 2, by calling 2 at the highest level with the current taxiway set
to None (to ensure the first taxiway actually has an edge). If it does not find a valid path, it returns an error.

At the end of this step, the algorithm returns a list of taxiway branches, in order, that can be followed to go from the
origin point to the destination point. This list is passed onto a low-level path planner to be refined into a set of waypoints
on the taxiways to be followed as described in Section IV. If such a list does not exist, or if it is not unique, the algorithm
returns an error, so that the pilot can call ATC on the radio and clarify.

C. Implementation and discussion
We have implemented our ATC route validation algorithm in Python, and have tested it on airports of different

sizes, including Ann Arbor (KARB) and Willow Run (KYIP). The algorithm performs well in practice, and can run on
airports of different sizes with computation times in a few seconds at most.
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It might seem at first glance that a simpler path finding algorithm running directly on the undirected KARB graph,
and just avoiding going back to a vertex just previously visited, might be simpler and as effective. However, our approach
is more general. For example, the paths BC-AC-AB is explicitly allowed on Ann Arbor Airport, even though it involves
a rather tight turn. Such a tight turn might be disallowed on some other airports, or not be allowed for certain TDGs.
Our algorithm can easily encode this fact by simply removing edge A from vertex “AC from BC” to vertex “AB from
AC” in Fig. 4. Symmetrically, if path AB-AC-BC was not allowed, our algorithm could easily encode this fact by
removing edge C from vertex “AC from AB” to vertex “BC from AC”.

IV. Path planner and low-level controllers

Fig. 5 Visualization of the ab-
stracted view of a portion of
the AnnArbor airport together
with a generated path (shown
with red dots).

Once a verified route is obtained from the high-level, this information is used
at the planning layer to generate a set of waypoints that can be sent to a low-level
tracking controller. At this point we use a priori map information for the aircraft
that includes taxiway geometry together with the current position of the aircraft.
Taxiways and runways are made up of straight segments and curved parts (e.g.,
centerline while changing taxiways) with constant radius R. For airports of interest,
the map is abstracted using this information and prestored in the system. Waypoints
are essentially a consecutive sequence of positions along the centerline from current
position to destination through the given route. The waypoint data structure also
contains, for each point, the curvature of the centerline at that point and the width
of the taxiway (which is relevant to taxiway design groups that determine what type
of aircraft can use which taxiways [8]). Figure 5 shows a sample path generated
through this process.

Once a path (set of waypoints) is generated, a lower-level tracking controller is
used to track this path. The low-level controllers are separately designed for lateral
and longitudinal dynamics. For the design of the tracking controller for longitudinal
dynamics, we use the following model:

d
dt

[
υ

s

]
︸︷︷︸
xlong

=

[
−

f1
m 0
1 0

]
︸         ︷︷         ︸

Along

[
υ

s

]
+

[
1
m

0

]
︸ ︷︷ ︸
Blong

Fw +

[
−

f0
m

0

]
. (1)

The system states consist of the aircraft’s longitudinal velocity (υ) and taxied
distance along the taxiways (s). Control input Fw represents the net force acting
on the aircraft. Finally, constants m, f0 and f1 are parameters of the model. The values of these parameters and
the bounds of the variables can be found in Table 1. In particular, the domain the dynamics are defined on is
Xlong := [υmin, υmax] × [smin,∞).

As for specifications for longitudinal dynamics we impose different speed profiles for different curvatures (as per
FAA recommendations), faster travel through straight paths and slower speed through turns. In particular, we aim to taxi
as fast as possible while not exceeding FAA recommended speed limits for different types of taxiways. Accordingly, we
have implemented two different controllers for this purpose:

1) For the first controller, we consider a hybrid proportional-integral (PI) controller, defined as:

u(t) = −kP(υ(t) − υdesPI (κ)) − kI e(t),

e(t) =
t∑
τ=0
(υ(τ) − υdesPI (κ)).

(2)

where e(t) is the error state and kI is the integral coefficient. The output u of the controller is saturated to
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Table 1 Parameter values for the longitudinal dynamics model

Param. Description Value
m aircraft taxi weight 2182 (kg)
f0 friction/drag term 71.28 (N)
f1 friction/drag term 1.2567 (Ns/m)
υmin minimum longitudinal velocity 0 (m/s)
υmax maximum longitudinal velocity 15 (m/s)
smin minimum taxied distance 0 (m)
Fmax
w maximum force 10000 (N)

Fmin
w minimum force −8728 (N)
υdes,straight desired longitudinal velocity of straight taxiway 5 (m/s)
υdes,curve desired longitudinal velocity of curved taxiway 2 (m/s)
τmin,brake minimum braking horizon 1 (s)
rdes desired yaw rate 0.1 (rad/s)

compute the input to the system by Fw = satF
max
w

Fmin
w
(u)∗. The desired longitudinal velocity υdesPI (κ) is defined by:

υdesPI (κ) =

{
υdes,straight if the current path is straight

υdes,curve if the current path is curved.
(3)

2) We also consider a Model-predictive controller (MPC) that incorporates specifications related to braking. The
braking specifications include a minimal braking horizon τmin,brake, which means once the brakes are used,
they should be engaged for a minimum of τmin,brake seconds. This is encoded within the MPC constraints and
the following optimization problem is solved online at each sampling time:

min
T∑
t=0
| |υ(t) − υdes,straight | |

s.t . Time − discretized longitudinal dynamics

υ(t) ≤ υmax
MPC(s(t)), t = 0, ...,T,

xlong(0) = x0,

Fmin
w ≤ Fw(t) ≤ 0.1Fmin

w or 0 ≤ Fw(t) ≤ Fmax
w , t = 0, ...,T − 1,

Fw(t) < 0, t = 0, ..., bstep − 1,
i f ∃t ∈ {0, 1, . . . ,T − 2} s.t . Fw(t) ≥ 0 and Fw(t + 1) < 0,

then Fw(τ) < 0, τ = t + 1, ...,min(T, t + τmin,brake,step),

i f bstep = −1 and Fw(0) < 0,

then Fw(τ) < 0, τ = 1, ...,min(T, τmin,brake,step − 1).

(4)

where x0 is the initial condition, T is the length of the prediction horizon. The sampling period is chosen to be
∆t = 0.1s, and the braking steps is defined as τmin,brake,step � dτmin,brake/∆te. The variable bstep is an input
to the MPC and denotes the remaining brake steps (within the τmin,brake,step limit) if the system used the brakes
in the previous time instant(s) or set to −1 if braking was not used in the preceding time step. Since Fmin

w is
negative, the constraint on Fw(t) implies that the braking would not be too light when it is used to avoid wear and
tear. To capture the dependence of maximum longitudinal velocity to the curvature κ of the path at each control

∗Throughout the text, we use the following notation for the saturation function: satba (x) � max(a,min(b, x)).
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interval t, we use a prediction of which part of the taxiways the aircraft will be at and use the curvature of that
path to compute the υmax

MPC
(t), i.e., υmax

MPC
(t) is defined as:

υmax
MPC(s(t)) =

{
υdes,straight if the path at control interval t is straight
satυ

des,str aight

υdes,curve ( rdes

|κ(s(t)) | ) if the path at control interval t is curved
. (5)

To avoid sharp turns, we use the inverse of curvature κ multiplied by rdes to set desired absolute yaw rate around
rdes (rad/s). We also use a saturation function to set a minimum and maximum allowed velocity to make sure for
extreme values of κ the aircraft will not be forced to stop or exceed the speed limit. Finally, the constraints in the
MPC problem in (4) are converted to a set of mixed integer linear constraints by introducing binary variables to
capture the logical constraints and if-then statements.

The variants of the longitudinal controllers we tested are shown in Table 3. Qualitatively, the best performing
controller was MPC30

long
, which is used to generate the simulation videos. However, computation time increases roughly

linearly with the MPC horizon so this controller was about 3 times slower in computing a control action compared to
MPC10

long
. The PI controller completely ignored the specifications regarding braking duration but it did not lead to any

computational overhead either. One interesting observation is that when we omitted the braking constraints, we have
experienced flat tire events in our X-Plane implementation (cf. Section IV.A) when the aircraft repeatedly taxied for the
purposes of falsification. Braking constraints, as per FAA guidance, significantly reduces such incidents.

In addition to longitudinal control, we design lateral controllers to follow the centerline. The following model is
used for the lateral dynamics of the aircraft:

d
dt


y

v

∆ψ

r

︸   ︷︷   ︸
xlat

=


0 1 υ0 0
0 −

Ca f +Car

mυ0
0 bCar−aCaf

mυ0
− υ0

0 0 0 1
0 bCar−aCaf

Izυ0
0 −

a2Ca f +b
2Car

Izυ0

︸                                                    ︷︷                                                    ︸
Alat


y

v

∆ψ

r


+


0

Ca f

m

0
aCa f

Iz

︸      ︷︷      ︸
Blat

δf +


0
0
−1
0

︸  ︷︷  ︸
Elat

rd (6)

where the four states are: lateral deviation from the center of the taxiway lane (y), the lateral velocity (v), the
yaw-angle deviation in road-fixed coordinates (∆ψ), and the yaw rate (r). The input δf is the steering angle of
the front gear, which is limited to lie within θmin

s and θmax
s . And, the external disturbance/reference term rd is

the required yaw rate computed by rd = υ0κ where κ is the taxiway curvature and υ0 is the aircraft’s longitudinal
velocity. Other parameters include m, the total taxi mass of the aircraft, and a, b, Caf and Car , are the aircraft’s
geometry and tire parameters. These values can be found in Table 2. And accordingly, the domain of the dynamics is
Xlat := [−ymax, ymax] × [−vmax, vmax] × [−∆ψmax,∆ψmax] × [−rmax, rmax].

For the specification regarding lateral dynamics, we aim to achieve “cockpit over centerline" taxiing.
We explore two types of tracking controllers:
1) A hybrid proportional (P) controller defined as:

u = K>P xlat . (7)

The proportional gain K>P is tuned to give good performance for the complex dynamics in X-Plane. The control
input δf is obtained by saturating u to account for the physical limits of the actuators, i.e., δf = satθ

max
s

θmin
s
(u).

2) An MPC controller with a linearized discrete-time model and a sampling period of 0.1s using the following
formulation:

min
T∑
t=0

xlat (t)>Qxlat (t) + 2u2(t)

s.t . Time − discretized lateral dynamics

θmin
s ≤ u(t) ≤ θmax

s , t = 0, ...,T − 1,
xlat (0) = x0.

(8)
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Table 2 Parameter values for the lateral dynamics model

Param. Description Value
m aircraft taxi weight 2182 (kg)
Iz aircraft moment of inertia 15000 (kgm2)

a aircraft geometry parameter 2.44 (m)
b aircraft geometry parameter 0.44 (m)
Caf tire parameter 59128 (N/rad)
Car tire parameter 347409 (N/rad)
ymax maximum lateral deviation 1 (m)
vmax maximum lateral velocity 1 (m/s)
∆ψmax maximum yaw-angle deviation 0.2 (rad)
rmax maximum yaw rate 0.2 (rad/s)
θmin
s minimum steering angle −0.6981 (rad)
θmax
s maximum steering angle 0.6981 (rad)

where T is the length of the prediction horizon, x0 is the initial condition and Q = diag([0.5 0 4 0]). The
dynamics in (6) has the required yaw rate rd(t) as an input. While implementing the time-discretized version of
the dynamics within MPC, rd(t) over the horizon t = 0, 1, ...,T − 1 is estimated using the current longitudinal
velocity and the curvature information about the path ahead from the waypoint generator. Since the constraints
in the MPC formulation already include the input saturation, control input is set as δf = u(0).

We use a Baron 58 aircraft model (in X-Plane) in our initial tests, and the longitudinal and lateral models used by
MPC are tuned to be compatible with this aircraft. Those tuned model parameters can be found in the upper parts of
Table 1 and Table 2. Specifically, the aircraft’s taxi weight, friction/drag terms, moment of inertia, geometry parameters
and tire parameters are computed according to the aircraft’s parameters in X-Plane.

Table 3 Controllers used in our tests

Controller
(parameters) Notation Parameter

Longitudinal
dynamics

PI controller
(P/I gains) PIlong kP = 1, kI = 0.1

MPC
(horizon)

MPC10
long

10

MPC20
long

20

MPC30
long

30

Lateral
dynamics

Proportional controller
(P gain) Plat KP = [0.1; 0; 5; 0]

MPC
(horizon)

MPC2
lat

2

MPC5
lat

5

MPC20
lat

20

11



A. Simulation setup
The overall system is implemented by integrating several modules. We use X-Plane as the aircraft simulator.

The low-level controllers are implemented in Matlab Simulink, while the X-Plane Connect Toolbox [11] is used for
interfacing with X-Plane. In our current implementation, the low-level controllers use GPS data from X-Plane (corrupted
by noise to add realism) for state feedback. A video of an X-Plane simulation where our controllers are taxiing a Baron
58 aircraft on Ann Arbor airport can be found here https://youtu.be/NcBEo81lKG4.

In future work, we would like to switch from a GPS-based controller to a vision-based controller, as the former does
not allow to detect and avoid service vehicles or unexpected obstacles during ground operations. This will be achieved
by exporting real-time camera feeds from X-Plane and adding computer vision – image processing modules for state
estimation, object detection and localization. We also plan to explore the use of vision, instead of GPS, for localization
on the taxiway to estimate lateral deviation from the centerline and yaw-angle.

V. Falsification-based analysis of different controllers
Our proposed architecture is designed in a way to facilitate verification of different components. In this section,

we demonstrate how falsification techniques can be employed to evaluate different lateral tracking controllers we
designed at the low level. Therefore we focus on the safety specification requirement - “cockpit over centerline" taxiing.
Mathematically, we want the following to hold:

ϕlat B ∀t : |y(t)| ≤ ymax . (9)

This is an invariance property and can also be represented by the temporal operator “always" in linear temporal logic
[12]. In what follows, we use two different falsification tools to count the violations of the above specification when
different controllers for the lateral dynamics are employed.

Although we explore four different controllers for longitudinal dynamics, the controller PIlong described in Table
3 is used to control the longitudinal dynamics for all of the following results. This choice was made to decrease
the simulation time, as the use of the longitudinal PI controller when compared to the longitudinal MPC controllers
decreases the simulation time by roughly a factor of 3. As the specification (9) that the falsification tools attempt to
violate is a specification for the lateral dynamics and the simulation is run on a straight segment of the taxiway, the
choice of longitudinal controller does not have a large impact on the results of this section.

1. S-TaLiRo
We use S-TaLiRo, a falsification tool that is proposed in [13], to find falsifying initial conditions and disturbance

trajectories that lead to a violation of ϕlat . The block-diagram in Figure 6 summarizes how S-TaLiRo and our system
model are interfaced.

To evaluate the performance of the different controllers, we run S-TaLiRo multiple times to see how many times it
can find falsifying initial conditions and disturbance trajectories. We restrict the initial conditions that S-TaLiRo can
choose by letting y0 ∈ [−y

max, ymax], ∆ψ0 ∈ [−0.15, 0.15] and the remaining states in lateral dynamics are initialized
to constants: v0 = 0, r0 = 0. In addition, we impose bounds on the external disturbance inputs, i.e., d(t) ∈ D for all t
where D B [−ymax/2, ymax/2] × [−vmax/2, vmax/2] × [−∆ψmax/2,∆ψmax/2] × [−rmax/2, rmax/2]. We initialized
the aircraft on a straight segment of the taxiway in the Ann Arbor airport near the point Ch in Fig. 2, and ran the
simulation for 3 s.

While S-TaLiRo can jointly search for initial conditions and disturbance inputs, the search spaces for initial
conditions and disturbance trajectories are not comparable, the latter being much larger. Given a fix number of
iterations, which acts as a timeout condition, it is hard to separate the impact of disturbance from the hardness of the
search using S-TaLiRo. To overcome this issue and to understand the impact of initial conditions and disturbance
trajectories on the control performance separately, we consider the following evaluation strategy. We take a set of
initial conditions y0 ∈ [−1, 1], ∆ψ0 ∈ [−0.15, 0.15] and mesh it into a 21 × 21 grid. Then by setting disturbance
values to zero, we count how many initial conditions on this grid lead to a violation of the specification ϕlat . In
addition, we run S-TaLiRo with those non-falsifying initial conditions to see whether it can find falsifying disturbance
trajectories. The number of samples S-TaLiRo can try to find a falsifying trajectory for each initial condition is set
to 100. We impose two different bounds on the external disturbance input, i.e., D is the same as defined before and
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Fig. 6 Main framework. The output from system model (X-Plane flight simulator) are used by S-TaLiRo to
find falsifying initial conditions (x(i)0 ) and disturbance trajectories (d). The generated initial conditions are sent
to X-Plane for placing the aircraft at desired initial position. And the disturbances representing noise in sensory
measurements are added to the state values from system model. Thus, xc = x + d, where xc is the state vector
observed by the controller and x is the true state vector from X-Plane’s data.

D1/2 B [−y
max/4, ymax/4] × [−vmax/4, vmax/4] × [−∆ψmax/4,∆ψmax/4] × [−rmax/4, rmax/4]. Table 4 summarizes

the falsifying initial condition rates using this method, while Figures 7–10 show the distribution of non-falsifying and
falsifying grids. Red crosses indicate falsifying initial conditions even when there is no disturbance, black diamonds
indicate initial conditions for which S-TaLiRo finds a falsifying disturbance trajectory and green dots indicate the
remaining non-falsifying initial conditions.

Fig. 7 S-TaLiRo: Distribution of initial condition grids for controller Plat , with disturbance domains D (left)
and D1/2 (right).

Table 4 shows that with a smaller disturbance domain D1/2, S-TaLiRo finds fewer falsifying disturbance trajectory as
expected. Another observation from the distribution figures is the red crosses all locating on the boundaries of the
plots which indicates that they are basically "hard" initial conditions for the responding controllers because they are
still falsified even there is no environmental disturbance added to the system. This makes sense as the upper right
and lower red corners correspond to cases where the deviation from the centerline is large and the aircraft is pointing
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Fig. 8 S-TaLiRo: Distribution of initial condition grids for controller MPC2
lat

, with disturbance domains D
(left) and D1/2 (right).

Table 4 S-TaLiRo: Lateral dynamics falsification rates. The entire set of initial conditions N has 441 grid
points. N0 is the set of falsifying initial conditions without disturbance while N1

n and N2
n stand for the sets of

initial conditions for which S-TaLiRo can find falsifying disturbance trajectories within domain D and D1/2,
respectively. When calculating N1

n and N2
n, we only use non-falsifying initial conditions without disturbance,

which is N\N0.

Controller size of N0 (N0
N × 100%) size of N1

n + N0 (
N1

n+N0
N × 100%) size of N2

n + N0 (
N2

n+N0
N × 100%)

Plat 61 (13.8%) 202 (45.8%) 83 (18.8%)

MPC2
lat

229 (51.9%) 238 (54.0%) 234 (53.1%)

MPC5
lat

58 (13.2%) 85 (19.3%) 78 (17.7%)

MPC20
lat

49 (11.1%) 193 (43.8%) 112 (25.4%)

outwards from the certerline. Therefore, maneuvering without getting out of the taxiway in these scenarios is hard.
The controller MPC2

lat
has very poor performance. The MPC design MPC5

lat
seems to be the safest among all these

controllers as we can see both MPC20
lat

and Plat have poor performance when there exists some external disturbance.
The mismatch between the lateral dynamic models used in MPC design and X-Plane simulator could explain the
performance degradation in MPC for larger horizons (cf. MPC5

lat
and MPC20

lat
). MPC uses the dynamic model of the

plant it controls to predict the future output which is later used together with the desired output trajectory and set of
constraints in the calculation of the optimal controller output. So with the model plant mismatch, the errors between
predicted future output and real future output become much larger for MPC20

lat
. Another interesting observation is that

we ran the same experiments with a linear model for aircraft dynamics (instead of the X-Plane for dynamics simulator)
in which case we observed that the performance of MPC20

lat
is better than that of MPC5

lat
when the dynamics matches

identically to the one used in design. Finally, since the path segment considered is straight and the aircraft is (almost)
symmetric, we expect the set of initial conditions that are falsified to be symmetric around the origin (i.e., being on the
far left of the certerline is as hard as being on the far right with the opposite orientation). This symmetry is slightly
broken in some of the figures, which might be due to the random nature of the falsification algorithm in S-TaLiro or the
non-determinism in X-Plane.
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Fig. 9 S-TaLiRo: Distribution of initial condition grids for controller MPC5
lat

, with disturbance domains D
(left) and D1/2 (right).

Fig. 10 S-TaLiRo: Distribution of initial condition grids for controller MPC20
lat

, with disturbance domains D
(left) and D1/2 (right).

2. Breach
In addition to S-TaLiRo, another falsification tool, Breach, proposed in [14], was also used to find falsifying initial

conditions and disturbance trajectories to violate ϕlat . The framework for Breach is identical to that shown in Figure 6,
except that Breach is used in place of S-TaLiRo.

For the Breach falsification runs, the same initial conditions were used: y0 ∈ [−y
max, ymax], ∆ψ0 ∈ [−0.15, 0.15]

and all other lateral dynamics state initial conditions are set to constants: v0 = 0, r0 = 0. In addition, the bounds
on the external disturbance inputs are identical as in the analysis of S-TaLiRo, i.e., d(t) ∈ D for all t where
D B [−ymax/2, ymax/2] × [−vmax/2, vmax/2] × [−∆ψmax/2,∆ψmax/2] × [−rmax/2, rmax/2], and d(t) ∈ D1/2 for all
t where D1/2 B [−y

max/4, ymax/4] × [−vmax/4, vmax/4] × [−∆ψmax/4,∆ψmax/4] × [−rmax/4, rmax/4]. We used
the same set of meshed initial conditions of y0 ∈ [−1, 1], ∆ψ0 ∈ [−0.15, 0.15] in a 21 × 21 grid without disturbances to
determine whether these initial conditions alone lead to a violation of the specification ϕlat . Then, Breach was run on
the remaining initial conditions to determine whether a falsifying trajectory can be found using a disturbance input. For
each initial condition, Breach was also limited to 100 samples for each set of bounds on the disturbance input D and
D1/2.
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Table 5 summarizes the falsifying initial condition rates using this method, while Figures 11–14 show the distribution
of non-falsifying and falsifying grids. Red crosses indicate falsifying initial conditions without disturbance trajectories,
black diamonds indicate initial conditions for which Breach finds a falsifying disturbance trajectory, and green dots
indicate the remaining non-falsifying initial conditions.

Fig. 11 Breach: Distribution of initial condition grids for controller Plat , with disturbance domains D (left)
and D1/2 (right).

Fig. 12 Breach: Distribution of initial condition grids for controllerMPC2
lat

, with disturbance domains D (left)
and D1/2 (right).

By comparing Tables 4 and 5, it is clear that Breach falsifies many more initial conditions than S-TaLiRo does for
both disturbance bounds D and D1/2. In fact, for disturbance bounds D, Breach falsifies every initial condition in the
mesh for every controller except MPC2

lat
. This indicates that Breach was more successful than S-TaLiRo at finding

"difficult" disturbance inputs for the controller. A possible explanation for this is the fact that Breach begins each
set of falsification attempts by testing "corner-cases." These corner-cases represent setting the control points of the
disturbance signal to their maximum (or minimum) values, thus resulting in a constant bias or a switching behavior
between maximum positive and negative disturbance values. It appears that the controllers were very susceptible to
falsification under this type of disturbance for disturbance bounds D. This is different from S-TaLiRo’s random-search
method. Only in the case of the MPC design controller MPC20

lat
do there appear to exist initial conditions that S-TaLiRo
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Fig. 13 Breach: Distribution of initial condition grids for controllerMPC5
lat

, with disturbance domains D (left)
and D1/2 (right).

Table 5 Breach: Lateral dynamics falsification rate of initial condition grids. The entire set of initial conditions
N has 441 grids. N0 is the set of falsifying initial conditions without disturbance while N1

n and N2
n stand for the

sets of initial conditions for which Breach can find falsifying disturbance trajectories within domain D and D1/2.
When calculating N1

n and N2
n, we only use non-falsifying initial conditions without disturbance, which is N\N0.

Controller size of N0 (N0
N × 100%) size of N1

n + N0 (
N1

n+N0
N × 100%) size of N2

n + N0 (
N2

n+N0
N × 100%)

Plat 57 (12.9%) 441 (100.0%) 347 (78.7%)

MPC2
lat

227 (51.5%) 349 (79.1%) 256 (58.0%)

MPC5
lat

69 (15.6%) 441 (100.0%) 171 (38.8%)

MPC20
lat

56 (12.7%) 441 (100.0%) 260 (59.0%)

was able to falsify but Breach was not. These can be seen by comparing the right-side images in Figures 10 and 14.
Additionally, for disturbance bounds D, it appears that the MPC design controller MPC2

lat
is the safest under Breach’s

falsification, as it is the only controller for which not all initial conditions were falsified. This contradicts the findings
from S-TaLiRo mentioned previously, but could be explained due to Breach’s more "extreme" method of choosing
maximum or minimum disturbance inputs. This will result in larger model plant mismatch for Breach than S-TaLiRo,
meaning that MPC controllers with longer prediction horizons will have greater errors between their predicted and actual
future state. Thus, the safest controller found under Breach’s falsification using disturbance bounds D may have a shorter
prediction horizon than the safest controller found under S-TaLiRo’s falsification using the same bounds D. However,
for disturbance bounds D1/2, MPC5

lat
performs better than MPC2

lat
. This agrees with the findings from S-TaLiRo, which

suggests that the MPC5
lat

is the safest for disturbance bounds D1/2 for both falsification tools. Another observation is
that, for the smaller disturbance domain D1/2, Breach also finds fewer falsifying disturbance trajectories than for domain
D, just as S-TaLiRo did. Finally, just as with S-TaLiRo, the symmetry is somewhat broken in some of the figures, which
may be due to Breach selecting different corner-cases for each point, or non-determinism in X-Plane. We also note that,
in terms of the time it takes for falsification, we did not observe a significant difference between S-TaLiRo and Breach.

We note that there is a slight mismatch between the first columns of Tables 4 and 5. This is unexpected, since in this
column should represent simply running the controller without any disturbance produced by the falsification tool. A
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Fig. 14 Breach: Distribution of initial condition grids for controllerMPC20
lat

, with disturbance domains D (left)
and D1/2 (right).

possible explanation for this that we noticed is again some non-determinism in X-Plane, i.e., running it from the exact
same initial condition with the same controller does not always generate the exact same trajectory.

VI. Conclusions and future work
In this paper, we presented an architecture for autonomous taxiing operations. We divided the functionality into

four parts: (i) a high-level discrete decision maker that ensures the validity of the routes provided by ATC and that
notifies ATC whenever the route becomes infeasible/unsafe to proceed through; (ii) a middle-level path planner that
combines the route information together with airport map information to generate waypoints that should be followed by
the aircraft; (iii) a low-level controller that follows the generated path as long as feasible based on sensory information;
and (iv) a sensor processing/perception layer (to be implemented as part of future work) that provides the low and
high-level controllers with situational awareness necessary to safely accomplish the taxiing task. This architecture
allows us to map certain specification to different parts in the architecture, which might be relevant for enabling the
verification of the overall system in a modular manner. We then focused on items (i) and (iii). For (i), we developed
algorithms that use graph-based abstractions of taxiway layouts of airports that are used for reasoning about route
validity. For (iii), we designed controllers for longitudinal and lateral dynamics that together navigate the aircraft
along the desired path. Finally, we used falsification tools S-TaLiRo and Breach to evaluate the set of initial conditions
and disturbance inputs that different controllers for centerline tracking can tolerate. The larger the number of initial
conditions a controller can avoid constraint violation from, the safer the controller. The disturbance inputs we consider
act as a proxy for sensor imperfections. In the future, we plan to use more realistic sensor modalities, for instance,
cameras with (potentially learning-based) perception components, for which new verification and falsification techniques
might be required [15, 16]. One approach we are pursuing in this direction is to extend our earlier work on using
game-based invariant synthesis [17] to the case with imperfect measurements. We are also interested in formalizing
the complete taxiing specifications into requirements represented in signal temporal logic and developing a modular
formal verification framework for ensuring that the proposed architecture provides safety guarantees for the system. The
main challenge here is the scalability of the verification approaches to a system of this complexity. While sound but
incomplete falsification techniques provide a means to get around the complexity issue and are shown to be efficient to
find failure cases, it is not possible to get a correctness certificate based only on falsification. Therefore, developing a
scalable and modular verification methodology would be desirable.
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