
Reachability Analysis of Neural Network Control
Systems with Tunable Accuracy and Efficiency

Yuhao Zhang, Hang Zhang and Xiangru Xu, Member, IEEE

Abstract— The surging popularity of neural networks in
controlled systems underscores the imperative for formal
verification to ensure the reliability and safety of such
systems. Existing set propagation-based approaches for
reachability analysis in neural network control systems
encounter challenges in scalability and flexibility. This work
introduces a novel tunable hybrid zonotope-based method
for computing both forward and backward reachable sets of
neural network control systems. The proposed method in-
corporates an optimization-based network reduction tech-
nique and an activation pattern-based hybrid zonotope
propagation approach for ReLU-activated feedforward neu-
ral networks. Furthermore, it enables two tunable parame-
ters to balance computational complexity and approxima-
tion accuracy. A numerical example is provided to illustrate
the performance and tunability of the proposed approach.

Index Terms— Reachable set, neural network control
systems, scalability, tunability, hybrid zonotope.

I. INTRODUCTION

NEURAL Networks (NNs) have gained widespread use in
autonomous systems. However, the application of NNs

in safety-critical scenarios necessitates formal verification as
NNs exhibit high sensitivity to minor perturbations in the input
space. To address this issue, several recent advancements have
focused on reachability-based methods, primarily owing to
their computational efficiency in the safety verification of Neu-
ral Network Control Systems (NNCS). By abstracting the non-
linear activation functions of NNs using different set repre-
sentations, the Forward Reachable Sets (FRSs) and Backward
Reachable Sets (BRSs) of NNCS can be computed through
set-propagation techniques to validate the safety specifications
[1], [2], [3], [4], [5]. Despite these interesting results, many
problems related to scalability and approximation accuracy
require further exploration [6], [7].

Recently, an approach based on Hybrid Zonotope (HZ)
was proposed to compute the exact FRS and BRS of NNCS
with linear plant and ReLU-activated Feedforward Neural
Network (FNN) controllers [8], [9], [10]. With the capability
of representing non-convex sets with flat faces [11], [12], HZs

Manuscript received March 8, 2024; revised May 17, 2024; accepted
June 7, 2024. Date of publication XXXXXX; date of current version
XXXXXX. This work was supported in part by NSF under Grant CNS-
2222541 and Grant CMMI-2237850. Recommended by Senior Editor A.
Pedro Aguiar. (Corresponding author: Xiangru Xu.)

The authors are with the Department of Mechanical Engi-
neering, University of Wisconsin-Madison, Madison, WI 53706,
USA (e-mail: yuhao.zhang2@wisc.edu; hang.zhang@wisc.edu; xian-
gru.xu@wisc.edu).

Digital Object Identifier XXXXXX

(a) γ = 0, δ̄ ∈ {0, 0.6, 1}. (b) δ̄ = 0, γ ∈ {0, 0.6, 1}.

Fig. 1. An illustration of the “tunability” of the proposed method. The
approximation error of reachable set computation varies with values of
the tunable tolerance parameter, δ̄, and the tunable relaxation parame-
ter, γ. Exact reachable sets (red) are computed when δ̄ = γ = 0.

enable exact abstractions of ReLU-activated FNNs through
simple matrix operations. Nevertheless, the approaches men-
tioned above also face scalability challenges when dealing with
feedback systems incorporating large NNs. This is attributed to
the increasing representation complexity of the HZ reachable
sets, which escalates with the number of neurons in the NNs.
Heuristic complexity reduction techniques for general HZs
exist [9], [11], but they don’t leverage the inherent properties
of NNs. Several recent works proposed output-based NN
reduction algorithms by grouping neurons with similar ranges
over a given input domain [13], [14]; however, these methods
require predefined reduction metrics and only consider NNs
in isolation.

This work presents a novel HZ-based approach with the
flexibility of balancing computational complexity and approx-
imation accuracy. Contributions of this work are at least
twofold: i) A tunable optimization-based method is proposed
for reducing the number of neurons of a given FNN while
maintaining its intrinsic input-output mapping properties, with
the optimal reduction metrics determined on the fly. ii) Based
on the FNN reduction results, an activation pattern-based
approach is presented for computing the graph set of FNNs and
reachable sets of NNCS in the form of HZs. The constructed
HZ representations are proved to over-approximate the exact
graph and reachable sets. With the flexibility of tunable pa-
rameters, the proposed approach allows a trade-off between the
set representation complexity and the approximation accuracy
(see Fig. 1). The proposed approach can also restore exact
reachability analysis as a special case and enable sound
and complete verification for NNCS. The performance and
tunability of the proposed method are demonstrated through a
numerical example.

Notation. The i-th component of a vector x ∈ Rn is denoted

This article has been accepted for publication in IEEE Control Systems Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2024.3415471

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Wisconsin. Downloaded on June 18,2024 at 13:55:55 UTC from IEEE Xplore. Restrictions apply.

by xi with i ∈ [n] ≜ {1, . . . , n}. The i-th row (resp. j-th
columm) of a matrix A ∈ Rn×m is denoted by A[i, :] (resp.
A[:, j]). For a set C ⊂ [n] (resp. C′ ⊂ [m]), A[C, :] (resp.
A[:, C′]) denotes a submatrix of A with all rows i ∈ C (resp.
all columns j ∈ C′). The i-th column of an identity matrix I
is denoted as ei. Given sets X ⊂ Rn, Z ⊂ Rm and a matrix
R ∈ Rm×n, the generalized intersection of X and Z under R
is X ∩RZ = {x ∈ X | Rx ∈ Z}. An interval with bounds a,
a ∈ Rn is denoted as [[a,a]]. The interval hull of a set X ⊂
Rn is denoted as interval (X) ⊂ Rn. The projection of a set
X ⊂ Rn onto a set of coordinates Φ = {i1, . . . , ik} ⊂ [n] is
denoted as projΦ(X) ≜ {[ei1 · · · eik]

⊤x | x ∈ X} ⊂ Rk.

II. PRELIMINARIES & PROBLEM STATEMENT

We first give the definition of hybrid zonotope.
Definition 1: [11] The set Z ⊂ Rn is a hybrid zonotope

if there exist c ∈ Rn, Gc ∈ Rn×ng , Gb ∈ Rn×nb , Ac ∈
Rnc×ng , Ab ∈ Rnc×nb , b ∈ Rnc such that Z = {Gcξc +
Gbξb + c | ξc ∈ Bng

∞ , ξb ∈ {−1, 1}nb ,Acξc + Abξb = b}
where Bng

∞ = {x ∈ Rng | ∥x∥∞ ≤ 1} is the unit hypercube in
Rng . The HCG-representation of the HZ is given by Z = ⟨Gc,
Gb, c,Ac,Ab,b⟩, where c is called the center, the columns
of Gb are called the binary generators, and the columns of
Gc are called the continuous generators.

The representation complexity of Z is determined by ng , nb,
and nc. HZs are closed under commonly used set operations
such as linear map, intersection, and union. For an HZ Z ⊂
Rn, interval (Z) can be obtained by solving 2n Mixed Integer
Linear Programs (MILPs) [11], [12].

Next we define notations related to FNNs. Let π : Rn →
Rm be an ℓ-layer FNN with weight matrices {W (k−1)}k∈[ℓ]

and bias vectors {v(k−1)}k∈[ℓ]. Denote x(k) ∈ Rnk as the
neurons of the k-th layer. Then, x(k) = ϕ(W (k−1)x(k−1) +
v(k−1)), ∀k ∈ [ℓ−1], where x(0) = x is the input of the FNN
π and ϕ is the vector-valued activation function constructed by
component-wise repetition of the activation function σ(·), i.e.,
ϕ(z) ≜ [σ(z1) · · · σ(znk

)]⊤. In the last layer, only the linear
map is applied, i.e., π(x) = x(ℓ) = W (ℓ−1)x(ℓ−1) + v(ℓ−1).
Although only ReLU activation functions are considered in
this work, the proposed methods can be easily extended to
other types of activation functions by using their HZ approxi-
mation as in [15]. Given an input set Z ⊂ Rn of the FNN π,
the image set of Z is defined as π(Z) = {z ∈ Rm | z =
π(x),x ∈ Z} and the graph of π over Z is defined as
Gπ(Z) ≜ {(x, z) ∈ Rn+m | z = π(x),x ∈ Z}.

The plant considered in this work is given as

x(t+ 1) = Adx(t) +Bdu(t) (1)

where x(t) ∈ X ⊂ Rn, u(t) ∈ Rm are the state and the con-
trol input, respectively. The control input is u(t) = π(x(t))
where π is a given ℓ-layer FNN. The NNCS consisting of
system (1) and the controller π is a closed-loop system:

x(t+ 1) = fcl(x(t)) ≜ Adx(t) +Bdπ(x(t)). (2)

Given an initial set X0 ⊂ X for the NNCS (2), its T -step
FRS is defined as RT (X0) ≜ {x(T) ∈ X | x(t) = fcl(x(t−
1)), x(0) ∈ X0, t ∈ [T]}; given a target set T ⊂ X , its T -step

BRS is defined as PT (T) ≜ {x(0) ∈ X | x(t) = fcl(x(t −
1)), x(T) ∈ T , t ∈ [T]}. We assume the state set X , target set
T , and initial set X0 are all represented as HZs.

In this work, we aim to develop a systematic, HZ-based
approach for computing the FRS and BRS of the NNCS (2)
with a tunable trade-off between computational efficiency and
approximation accuracy.

III. TUNABLE FNN REDUCTION

In this section, we present a flexible optimization-based
approach for reducing the number of neurons of a given FNN
while preserving its important input-output mapping property.
Specifically, given an ℓ-layer FNN π and an input domain Z ,
we aim to construct a new FNN π̃ that has a reduced number
of neurons than π and that over-approximates the original
FNN π over the domain Z , i.e., π(Z) ⊆ π̃(Z). The main
idea of our reduction approach is to group “similar” neurons
in each layer of the FNN according to variable merge buckets
that is defined below.

Definition 2: Given an ℓ-layer FNN π, an input set Z , an
interval I(k) ≜ [[α(k),β(k)]] ⊂ Rnk that bounds the ranges of
the neurons in the k-th layer where k ∈ [ℓ−1], a set of scalar-
valued centers {c(k)j }

p
j=1, and a set of scalar-valued tolerances

{δ(k)j }
p
j=1, then a variable merge bucket of the k-th layer is

defined as

B(k) ≜ B(k)1 ∪ B(k)2 ∪ · · · ∪ B(k)p ⊆ [nk], (3)

with B(k)j ≜ {i ∈ [nk] | [[α(k)
i , β

(k)
i]] ⊆ [[c

(k)
j − δ

(k)
j , c

(k)
j +

δ
(k)
j]]} for j ∈ [p], where each neuron index i ∈ [nk] can only

belong to at most one bucket in B(k).
We call a neuron reducible if it is contained in a bucket

of B(k) with other neurons or if its range is a singleton
(i.e., α(k)

i = β
(k)
i). By definition, each bucket B(k)j contains

the indices of similar neurons whose output ranges fall into
an interval with center c

(k)
j and radius δ

(k)
j . To balance the

number of remaining neurons and approximation accuracy of
the reduced FNN, we formulate the following MILP to identify
the optimal centers {c(k)j }

p
j=1 and tolerances {δ(k)j }

p
j=1 of the

variable merge bucket B(k). Note that the superscript, k, is
dropped in the MILP for better readability.

min
{cj},{δj},{bi,j},{dj}

λ

p∑
j=1

δj −
nk∑
i=1

p∑
j=1

bi,j −
p∑

j=1

dj (4a)

s.t. 0 ≤ δj ≤ δ̄, bi,j ∈ {0, 1}, dj ∈ {0, 1}, cj ∈ R, (4b)
p∑

j=1

bi,j ≤ 1, (4c)

αi − cj + δj ≥ −M(1− bi,j), (4d)
βi − cj − δj ≤M(1− bi,j), (4e)
nk∑
i=1

bi,j ≤M(1− dj), ∀i ∈ [nk], ∀j ∈ [p]. (4f)

In (4), the k-th layer interval bounds I(k) = [[α(k),β(k)]], the
number of buckets p ∈ Z>0, the tunable tolerance parameter
δ̄ ∈ R≥0, and a sufficiently large positive constant M are

This article has been accepted for publication in IEEE Control Systems Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2024.3415471

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Wisconsin. Downloaded on June 18,2024 at 13:55:55 UTC from IEEE Xplore. Restrictions apply.

all given. The binary variable bi,j indicates whether the i-th
neuron is in the j-th bucket through constraints (4d)-(4e); the
binary variable dj indicates whether the j-th bucket is empty
through constraint (4f); constraint (4c) indicates that a neuron
is assigned to at most one bucket; the objective function (4a) is
formulated to maximize the number of neurons to be reduced
while minimizing the total sizes of the tolerances; the weight
parameter λ in (4a) is used to balance the sizes of buckets and
the number of neurons to be reduced. It’s easy to check that
the MILP (4) is always feasible.

Remark 1: Compared with other existing works on NN
reduction such as [13], [14], our method can abstract the FNN
with the reduction metrics determined on the fly in an optimal
manner. Given I, p ∈ Z>0, δ̄ > 0 and 0 < λ < 1

pδ̄
in the

MILP (4), let B∗ be the variable merge bucket corresponding
to the optimal solution of MILP (4). It’s easy to check that
all the neurons in B∗ are reducible. Moreover, guided by the
objective function (4a), B∗ contains the maximum number of
reducible neurons with the least number of non-empty buckets.

After creating the variable merge bucket by solving (4),
all neurons contained in the variable merge bucket will be
removed and the induced approximation error will be added to
the next layer to ensure an over-approximation of the original
FNN. This is summarized in the following lemma; the proof
of this lemma is similar to that of [13, Proposition 4] and is
omitted due to the space limitation.

Lemma 1: For the k-th layer of an FNN π, k ∈ [ℓ − 1],
given the interval bounds I(k) ⊂ Rnk for the neurons in the k-
th layer and the variable merge bucket B(k), a reduced network
π̃ is constructed by adjusting the weights and bias of the (k−
1)-th and k-th layers as follows:

W̃ (k−1)=W (k−1)[B(k), :], ṽ(k−1) = v(k−1)[B(k), :],

W̃ (k)=W (k)[:,B(k)], ṽ(k) = v(k)+ε(k),
(5)

where B(k) ≜ [nk] \B(k) denotes the index set of re-
maining neurons and ṽ(k) includes the approximation error
ε(k) ≜

∑p
j=1 W

(k)[:, B
(k)
j] · proj

B
(k)
j

(I(k)). Then, π̃ over-
approximates π over the domain Z , i.e., π(Z) ⊆ π̃(Z).

The reduced network π̃ can be computed by applying
Lemma 1 layer-by-layer as summarized in Algorithm 1.
Specifically, for the k-th layer of π̃, the output set X (k) is
computed through the function propagate in Line 4, which
represents FNN output computation algorithms such as [9,
Algorithm 1]. In Line 5, the interval hull of the HZ set X (k)

can be calculated exactly by solving a set of 2nk MILPs to
find the upper and lower bounds in the nk cardinal directions,
as detailed in [16, Proposition 3.2.10]. Based on the interval
bounds, a set of valid buckets is created by solving MILP (4)
in Line 6. Finally, in Line 7, weights and bias are adjusted
according to Lemma 1.

Proposition 1: Given an ℓ-layer FNN π and an input
domain Z , Algorithm 1 returns a reduced FNN π̃, such that
π(Z) ⊆ π̃(Z) and Gπ(Z) ⊆ Gπ̃(Z). Moreover, π(Z) =
π̃(Z) and Gπ(Z) = Gπ̃(Z) when δ̄ = 0.

Proof: By construction, after adjusting the weights
and bias of each layer in Line 7 of Algorithm 1, π̃ over-
approximates π according to Lemma 1. When δ̄ = 0, all the

Algorithm 1: Optimization-based FNN Reduction
Input: input domain Z , FNN π with weight matrices

{W (k−1)}ℓk=1 and bias vectors {v(k−1)}ℓk=1, the
number of buckets p ∈ Z>0, a sufficiently large
number M > 0, tunable tolerance bound δ̄ ≥ 0,
weight parameter 0 < λ < 1

pδ̄
Output: reduced FNN π̃ with weight matrices

{W̃ (k−1)}ℓk=1 and bias vectors {ṽ(k−1)}ℓk=1

1 X (0) ← Z;
2 W̃ (0) ← W (0); ṽ(0) ← v(0);
3 for k ∈ {1, 2, . . . , ℓ− 1} do
4 X (k) ← propagate(ϕ, W̃ (k−1), ṽ(k−1),X (k−1));
5 I(k) ← interval(X (k)); // Using [16, Prop.

3.2.10]

6 B(k),B(k) ← solving MILP (4) with I(k);
7 W̃ (k−1), ṽ(k−1), W̃ (k), ṽ(k) ← (5) in Lemma 1;

8 return {W̃ (k−1)}ℓk=1, {ṽ(k−1)}ℓk=1

bucket tolerances are forced to be 0 and no approximation
error will be propagated through the reduced FNN (i.e., ε(k) =
0). Thus, π(z) = π̃(z) and Gπ(Z) ⊆ Gπ̃(Z).

Note that the input domain Z can be any set representations
as long as the interval bounds in Line 5 of Algorithm 1 can
be computed. However, as shown in [10], the input-output
mapping of ReLU-activated FNNs can be represented exactly
by HZs, and the tightest interval bounds can be computed
by the interval hull of HZs. So we will use HZ as the set
representation for FNNs and NNCS in the following.

IV. TUNABLE HZ PROPAGATION OF FNNS AND NNCS
In this section, we first present an approach for propagating

an HZ through a given FNN π by approximating its graph Gπ
with a tunable trade-off between computational efficiency and
approximation accuracy, and based on that, compute the FRSs
and BRSs of the NNCS (2).

Motivated by the fact that ReLU-activated FNNs usually
observe limited numbers of activation patterns [17], we first
propose a novel graph computation approach to construct a
relaxed over-approximation of the graph Gπ .

Consider the graph of a scalar-valued univariate ReLU
function x = ReLU(z) over an interval [[α, β]] ⊂ R, i.e.,
GReLU ([[α, β]]) ≜ {(z, x) ∈ R2 | x = ReLU(z), z ∈ [[α, β]]}.
Depending on the activation pattern of ReLU , the graph can
be represented as the line segment in the first quadrant H+,
the line segment on the negative z-axis H−, or the union of
two line segments H± (see Fig. 2). Specifically,

GReLU ([[α, β]]) =
H+ ≜ ⟨

[
β−α
2

β−α
2

]
, ∅,

[
β+α
2

β+α
2

]
, ∅, ∅, ∅⟩, if 0 ≤ α ≤ β,

H− ≜ ⟨
[
β−α
2
0

]
, ∅,

[
β+α
2
0

]
, ∅, ∅, ∅⟩, if α ≤ β ≤ 0,

H± ≜ ⟨Gc
h,G

b
h, ch,A

c
h,A

b
h,bh⟩, if α < 0 < β,

where expressions of Gc
h,G

b
h, ch,A

c
h,A

b
h,bh can be found

in [10, Eqn. (3)]. The next lemma generalizes our previous

This article has been accepted for publication in IEEE Control Systems Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2024.3415471

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Wisconsin. Downloaded on June 18,2024 at 13:55:55 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Fig. 2. The graph of a ReLU function over [[α, β]] can be represented
as an HZ. (a) Graph H± with α < 0 < β, (b) The triangle over-
approximation of the graph C△ ⊃ H±.

result in [10] and presents an HZ representation for the graph
of the vector-valued ReLU function ϕ over an HZ domain.

Lemma 2: Given a domain represented as an HZ Z ⊂ Rnk

and its interval hull I ≜ [[α,β]] = interval(Z), then the graph
of the k-th layer’s vector-valued activation function ϕ : Rnk →
Rnk over Z can be exactly represented as

Gϕ(Z) = (P · GReLU (I)) ∩[I 0] Z (6)

where P = [e2 e4 · · · e2nk
e1 e3 · · · e2nk−1]

T ∈ R2nk×2nk

is a permutation matrix and GReLU (I) = GReLU ([[α1, β1]])×
· · · × GReLU ([[αnk

, βnk
]]).

The proof of Lemma 2 follows the same procedures as
[10, Lemma 2] and thus is omitted. As H+ and H− are
degenerated HZs without binary generators, the set complexity
of the constructed HZ using (6) is reduced by exploiting the
activation patterns of each neuron.

To further reduce the complexity of the computed HZ-
represented graph sets, the set H± can be over-approximated
by its triangle-shaped convex hull C△ as shown in Fig. 2,
i.e., H± ⊂ C△ ≜ ⟨

[
Gc

h Gb
h

]
, ∅, ch,

[
Ac

h Ab
h

]
, ∅,bh⟩. To

limit the conservatism on the over-approximated graphs, we
introduce a tunable relaxation parameter 0 ≤ γ ≤ 1 such that
H± is only replaced by the relaxed set C△ when the ratio
between α and β is large enough, i.e.,

G̃ReLU ([[α, β]])=

{
C△, if (α<0<β) ∧ (|α|β ≤γ ∨ β

|α|≤γ),

GReLU ([[α, β]]), otherwise.

Based on the relaxed formulation above, Lemma 2 can be
naturally extended to over-approximate the graph of the vector-
valued activation function ϕ over an HZ domain.

Proposition 2: Given an HZ Z ⊂ Rnk , its interval hull I =
interval(Z) and the tunable relaxation parameter 0 ≤ γ ≤ 1,
the graph of the activation function ϕ : Rnk → Rnk over Z
can be over-approximated by the following HZ:

G̃ϕ(Z) = (P · G̃ReLU (I)) ∩[I 0] Z ⊇ Gϕ(Z) (7)

where P and G̃ReLU (I) are defined similarly as in Lemma 2.
Moreover, when γ = 0, G̃ϕ(Z) = Gϕ(Z).

With the increase of the tunable relaxation parameter γ,
more graphs of individual neurons represented by H± will
be approximated by the relaxed set C△, resulting in a larger
over-approximated graph set of the activation function ϕ. In
the extreme case γ = 1, all the sets H± will be relaxed into
C△ and G̃ϕ(Z) will become a degenerated HZ without binary
generators. On the other hand, when γ = 0, no relaxation is
performed and therefore, Gϕ(Z) = G̃ϕ(Z).

Algorithm 2: Tunable graph over-approximation of FNN
Input: HZ input set Z , original FNN π with weight

matrices {W (k−1)}ℓk=1 and bias vectors
{v(k−1)}ℓk=1, number of buckets p ∈ Z>0, large
number M > 0, tolerance bound δ̄ ≥ 0, weight
parameter λ ≥ 0, relaxation parameter 0 ≤ γ ≤ 1

Output: Over-approximated graph G̃π as an HZ
1 X (0) ← Z = ⟨Gc

z,G
b
z, cz,A

c
z,A

b
z,bz⟩;

2 W̃ (0) ← W (0); ṽ(0) ← v(0);
3 for k ∈ {1, 2, . . . , ℓ− 1} do
4 Z(k−1) ← W̃ (k−1)X (k−1)+ṽ(k−1);
5 I(k−1)

z = [[α(k−1),β(k−1)]]← interval(Z(k−1));

I(k)x ←ϕ(I(k−1)
z); B(k),B(k) ← solving MILP (4)

with I(k)x ;
6 W̃ (k−1), ṽ(k−1), W̃ (k), ṽ(k) ← (5) in Lemma 1;
7 Z̃(k−1) ← projB(k)(Z(k−1)); // Linear map

8 Ĩ(k−1)
z ← projB(k)(I(k−1)

z); // Linear map

9 G̃(k) ← (P · G̃ReLU (Ĩ(k−1)
z)) ∩[I 0] Z̃(k−1); // HZ

intersection using [11, Prop. 7]
10 X (k) ← [0 I] · G̃(k); // Next layer input

11 ⟨Gc,Gb, c,Ac,Ab,b⟩ ← W̃ (ℓ−1)X (ℓ−1) + ṽ(ℓ−1);

12 G̃π ← ⟨
[
Gc

z 0
Gc

]
,

[
Gb

z 0
Gb

]
,

[
cz
c

]
,Ac,Ab,b⟩;

13 return G̃π

To construct an HZ over-approximation of the graph Gπ
for π, we can propagate the input set as an HZ through the
reduced FNN π̃ layer-by-layer using Proposition 2 and linear
map operations of HZs as summarized in Algorithm 2.

To incorporate the FNN reduction method presented in
Section III with the activation pattern-based graph compu-
tation, both the pre-activation interval bounds and the post-
activation interval bounds of neurons in each layer are needed
in Algorithm 2. Instead of solving two sets of MILPs to
get the interval hulls of pre-activated HZ Z(k−1) and post-
activated HZ ϕ(Z(k−1)), we only compute the interval hull
once in Line 5 by solving a set of 2nk MILPs, similar to
Line 5 in Algorithm 1. The pre-activation interval bounds are
then propagated through the activation in Line 6 to get post-
activation interval bounds. For monotonic activation functions
like ReLU, the interval propagation can be computed effi-
ciently and exactly without introducing any conservatism; in
other words, interval(ϕ(Z)) = ϕ(interval(Z)) holds. Since
the size of the FNN π decreases after applying Lemma 1
for each iteration in Line 8, the HZ Z(k−1) and the interval
I(k−1)
z computed from the original FNN are projected onto

the set of coordinates corresponding to the remaining neurons
(i.e., B(k)) in Line 9 and Line 10.

The following theorem shows that the graph over-
approximation in Algorithm 2 is sound.

Theorem 1: Given an ℓ-layer ReLU-activated FNN π :
Rn → Rm and an HZ Z ⊂ Rn, the output of Algorithm
2 G̃π is an HZ that over-approximates the exact graph of π
over Z , i.e., G̃π ⊇ Gπ(Z). Furthermore, G̃π = Gπ(Z) when

This article has been accepted for publication in IEEE Control Systems Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2024.3415471

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Wisconsin. Downloaded on June 18,2024 at 13:55:55 UTC from IEEE Xplore. Restrictions apply.

δ̄ = 0 and γ = 0.
Proof: A reduced FNN π̃ is constructed using (5) in Line

8 of Algorithm 2. In Line 9-12, the over-approximated input
set Z̃(k−1), graph G̃(k) and output set X (k) of the k-th layer of
the reduced FNN is computed iteratively for k ∈ [ℓ−1]. Thus,
the over-approximation properties are preserved through the
propagation of each hidden layer. Only a linear map is applied
to the last layer in Line 13 and G̃π stacks the input set and the
over-approximated output set of π̃ as G̃π ⊇ Gπ̃(Z). As π̃ over-
approximates π over Z , G̃π ⊇ Gπ̃(Z) ⊇ Gπ(Z). Since Z is
an HZ and HZs are closed under all the set operations involved
in Algorithm 2, G̃π is also an HZ by construction. When δ̄ =
γ = 0, π̃ preserves the same input-output relationship of π
as shown in Proposition 1, and the constructed graph set in
Line 11 is exact for each layer by Proposition 2. Thus, G̃π =
Gπ(Z).

Remark 2: Given the calculated graph G̃π of Algorithm 2,
for any HZ-represented input set Zin ⊆ Z , the image set
of π can be over-approximated by Z̃image = [0m×n Im] ·
(G̃π∩[In 0n×m]Zin); for any HZ-represented output set Zout ⊆
π(Z), the preimage set of π can be over-approximated by
Z̃pre = [In 0n×m] · (G̃π ∩[0m×n Im] Zout).

Finally, we give the following theorem that computes the
one-step over-approximated FRS and BRS for the NNCS (2).

Theorem 2: Consider NNCS (2) and any given HZ Z ⊂
Rn. Let G̃π be the over-approximated graph set of the FNN
π over the domain Z using Algorithm 2, i.e., G̃π ⊇ Gπ(Z).
(i) For any initial set X0 ⊆ Z represented by an HZ, the one-
step FRS of the NNCS (2) can be over-approximated by the
HZ R̃(X0) = [Ad Bd] · (G̃π ∩[In 0n×m] X0) ⊇ R(X0).
(ii) For any target set T ⊂ Rn represented by an HZ, the
one-step BRS of the NNCS (2) in the domain Z can be over-
approximated by the HZ P̃(T) = [In 0n×m] · (G̃π ∩[Ad Bd]

T) ⊇ P(T) ∩ Z.
(iii) The over-approximation in (i) and (ii) becomes exact when
δ̄ = γ = 0.

Proof: (i) Since G̃π ⊇ Gπ(Z) = {(x,u) ∈ Rn+m | x ∈
Z,u = π(x)} and R(X0) = {Adx + Bdu | x ∈ X0,u =
π(x)}, we have R̃(X0) ⊇ [Ad Bd] · (Gπ(Z) ∩[I 0] X0) =
{Adx+Bdu | x ∈ (Z ∩ X0),u = π(x)} = R(X0).
(ii) Since G̃π ⊇ Gπ(Z) = {(x,u) ∈ Rn+m | x ∈ Z,u =
π(x)}, we have P̃(T) ⊇ [In 0n×m] · (Gπ(Z) ∩[Ad Bd] T) =
{x ∈ Rn | x ∈ Z,u = π(x),Adx+Bdu ∈ T } = P(T)∩Z .
(iii) The results follow from G̃π = Gπ(Z) if δ̄ = γ = 0.
Note that multi-step FRSs or BRSs can be computed by
applying this theorem iteratively, and the size of the reduced
FNNs might vary with each iteration as the reduction is
performed locally.

Similar to the analysis for isolated FNNs, the over-
approximated FRSs and BRSs of the NNCS (2) become exact
when δ̄ = γ = 0 is selected in Algorithm 2. Given an unsafe
set O as an HZ, sufficient safety verification conditions for the
NNCS (2) can be formulated as MILPs by checking whether
the intersection between the computed FRSs/BRSs and the set
O is empty [9], [10].

Remark 3: The tunable parameters δ̄ and γ in Algorithm 2
govern bucket tolerances and HZ representation complexity for
FNNs and NNCS. In general, increasing δ̄ reduces FNN sizes

while larger γ relaxes HZ representations, which will reduce
the computation time at the expense of larger approximation
errors, resulting in a sound but incomplete verification. In
practice, the values of δ̄ and γ should be adjusted for desired
approximation accuracy. When δ̄ = γ = 0, the reacha-
bility analysis and safety verification results become exact.
Compared to existing HZ-based methods emphasizing exact
reachability analysis [9], [10], the proposed tunable approach
provides more flexibility in balancing computational efficiency
and approximation accuracy. This tunability offers a powerful
tool for the HZ-based method to handle NNCS whose HZ set
complexity arises from both the size of FNNs and the error
propagation during system evolution.

Remark 4: State-of-the-art NN verifiers like α, β-CROWN
[18] and Marabou [19] offer efficient analysis for standalone
NNs but introduce conservatism when directly applied to
NNCS. Compared with other set representations (e.g., zono-
topes [20], constrained zonotopes [3], and polynotopes [21])
that have also been used for NNCS reachability analysis, HZs
can represent arbitrary non-convex and disconnected sets with
flat faces and their set operations can be efficiently computed
using simple identities. These features make HZ better suited
for investigating NNCS reachability problems that usually
involve non-convex polytopic sets.

The method of this work can be potentially extended to
NNCS with nonlinear plant and other types of activation func-
tions by incorporating the nonlinear reachability algorithms
in [15], [22]. The computational efficiency of the proposed
method may be also further improved by leveraging the linear
bound propagation techniques in [18].

V. SIMULATION RESULTS

The following example demonstrates the computation of
FRSs and BRSs using Theorems 1 and 2. Results are obtained
in MATLAB R2022a on a desktop with an Intel Core i9-
12900k CPU and 32GB of RAM.

Consider the following linearized ground robot model:

x(t + 1) =

[
I2 I2
0 I2

]
x(t) +

[
0.5 · I2

I2

]
u(t), where the state

x = [x, y, ẋ, ẏ]⊤ consists of x− y position and velocity, and
the input u(t) = π(x(t)) is a ReLU-activated FNN with
100 neurons trained from a dataset generated by an MPC
controller.

First, we compute FRSs R̃1(X0), · · · , R̃5(X0) using The-
orem 2 iteratively with a given initial set X0 = [[2.5, 3]] ×
[[2.5, 3]]× [[−0.3,−0.1]]× [[−0.3,−0.1]] and tunable parameters
γ = 0 and δ̄ ∈ {0, 0.04dmax, 0.06dmax}, where dmax is the
largest range of neurons in each layer. The computation takes
47.36 sec for δ̄ = 0, 62.78 sec for δ̄ = 0.04dmax, and 70.15
sec for δ̄ = 0.06dmax. When δ̄ = 0.04dmax, the reduced FNNs
at t = 1, . . . , 5 have 4, 3, 7, 13, and 9 neurons, respectively;
when δ̄ = 0.06dmax, the reduced FNNs at t = 1, . . . , 5 have
1, 5, 5, 10, and 11 neurons, respectively. We compare our
method with NNV [5], ReachLP and ReachLP-Partition with
the default Greedy Sim-Guided partition [2]. The projections
of the FRSs onto the x−y plane are shown in Fig. 3. It can be
seen that all FRSs in our method with δ̄ = 0 coincide with the
exact FRSs computed by [10]. For two other values of δ̄, the

This article has been accepted for publication in IEEE Control Systems Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2024.3415471

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Wisconsin. Downloaded on June 18,2024 at 13:55:55 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. The 5-step FRSs (projected on the x − y plane) that are
computed via the proposed method, NNV, ReachLP, and ReachLP-
Partition.

FRSs computed using our method over-approximate the exact
FRSs, where a larger δ̄ results in a larger FRS as expected.
Moreover, FRSs computed using our method do not aggravate
the conservativeness as t increases, while those computed by
NNV and ReachLP tend to be more conservative with an
increasing t.

Next, we compute two-step BRSs P̃1(T) and P̃2(T) with
a given target set T = [[−1.5,−0.5]] × [[−2.5,−1.5]] ×
[[−1.1,−0.9]]× [[−1.1,−0.9]] and tunable parameters γ = 0.1
and δ̄ ∈ {0, 0.06dmax, 0.08dmax} using Theorem 2 iteratively.
A prior set enclosing the BRS is chosen as the input set
of Algorithm 2. For comparison, we use BReachLP and Re-
BReachLP [4] to compute over-approximations of the BRSs.
Fig. 4 shows the projections of the computed BRSs onto the
x − y plane. Similar to the FRS case, our calculated BRSs
become more conservative with a larger δ̄. Nevertheless, they
are more accurate than the BRSs computed by BReachLP and
ReBReachLP at t = 2.

VI. CONCLUSION

We introduced a tunable HZ-based approach that inte-
grates an optimization-based FNN reduction technique with
an activation pattern-based HZ propagation of FNNs. With
two tunable parameters, our method can generate HZ over-
approximations for the BRSs and FRSs of NNCS, allowing for
a flexible balance between set complexity and approximation
accuracy. Moreover, the proposed approach was shown to
revert to exact reachability analysis as a special case.

REFERENCES

[1] C. Huang, J. Fan, W. Li, X. Chen, and Q. Zhu, “ReachNN: Reachability
analysis of neural-network controlled systems,” ACM Transactions on
Embedded Computing Systems, vol. 18, no. 5s, pp. 1–22, 2019.

[2] M. Everett, G. Habibi, C. Sun, and J. P. How, “Reachability analysis
of neural feedback loops,” IEEE Access, vol. 9, pp. 163 938–163 953,
2021.

[3] Y. Zhang and X. Xu, “Safety verification of neural feedback systems
based on constrained zonotopes,” in IEEE Conference on Decision and
Control, 2022, pp. 2737–2744.

[4] N. Rober, M. Everett, and J. P. How, “Backward reachability analysis
for neural feedback loops,” in IEEE 61st Conference on Decision and
Control, 2022, pp. 2897–2904.

Fig. 4. The 2-step BRSs (projected on the x − y plane) that are
computed via the proposed method, BReachLP and ReBReachLP.

[5] D. M. Lopez, S. W. Choi, H.-D. Tran, and T. T. Johnson, “NNV 2.0:
The neural network verification tool,” in International Conference on
Computer Aided Verification. Springer, 2023, pp. 397–412.

[6] C. Brix, S. Bak, C. Liu, and T. T. Johnson, “The fourth international ver-
ification of neural networks competition (VNN-COMP 2023): Summary
and results,” arXiv:2312.16760, 2023.

[7] M. Lopez and et al., “ARCH-COMP23 category report: Artificial
Intelligence and Neural Network Control Systems for continuous and
hybrid systems plants,” in EPiC Series in Computing, 2023.

[8] J. A. Siefert, T. J. Bird, J. P. Koeln, N. Jain, and H. C. Pangborn, “Suc-
cessor sets of discrete-time nonlinear systems using hybrid zonotopes,”
in American Control Conference. IEEE, 2023, pp. 1383–1389.

[9] Y. Zhang and X. Xu, “Reachability analysis and safety verification of
neural feedback systems via hybrid zonotopes,” in American Control
Conference. IEEE, 2023, pp. 1915–1921.

[10] Y. Zhang, H. Zhang, and X. Xu, “Backward reachability analysis of
neural feedback systems using hybrid zonotopes,” IEEE Control Systems
Letters, vol. 7, pp. 2779–2784, 2023.

[11] T. J. Bird, H. C. Pangborn, N. Jain, and J. P. Koeln, “Hybrid zonotopes:
A new set representation for reachability analysis of mixed logical
dynamical systems,” Automatica, vol. 154, p. 111107, 2023.

[12] T. J. Bird and N. Jain, “Unions and complements of hybrid zonotopes,”
IEEE Control Systems Letters, vol. 6, pp. 1778–1783, 2021.

[13] T. Ladner and M. Althoff, “Specification-driven neural network reduc-
tion for scalable formal verification,” arXiv:2305.01932, 2023.

[14] Y. Y. Elboher, J. Gottschlich, and G. Katz, “An abstraction-based
framework for neural network verification,” in International Conference
on Computer Aided Verification. Springer, 2020, pp. 43–65.

[15] H. Zhang, Y. Zhang, and X. Xu, “Hybrid zonotope-based backward
reachability analysis for neural feedback systems with nonlinear sys-
tem models,” in American Control Conference, 2024 (to appear),
arXiv:2310.06921.

[16] T. J. Bird, “Hybrid zonotopes: A mixed-integer set representation for the
analysis of hybrid systems,” Purdue University Graduate School, 2022.

[17] B. Hanin and D. Rolnick, “Deep ReLU networks have surprisingly
few activation patterns,” Advances in Neural Information Processing
Systems, vol. 32, 2019.

[18] S. Wang and et al., “Beta-CROWN: Efficient bound propagation with
per-neuron split constraints for neural network robustness verification,”
Advances in Neural Information Processing Systems, vol. 34, pp.
29 909–29 921, 2021.

[19] G. Katz and et al., “The marabou framework for verification and analysis
of deep neural networks,” in 31st International Conference on Computer
Aided Verification. Springer, 2019, pp. 443–452.

[20] G. Singh and et al., “Fast and effective robustness certification,” Ad-
vances in Neural Information Processing Systems, vol. 31, 2018.

[21] C. Trapiello, C. Combastel, and A. Zolghadri, “Verification of neural
network control systems using symbolic zonotopes and polynotopes,”
arXiv:2306.14619, 2023.

[22] J. A. Siefert, T. J. Bird, J. P. Koeln, N. Jain, and H. C. Pangborn,
“Reachability analysis of nonlinear systems using hybrid zonotopes and
functional decomposition,” arXiv:2304.06827, 2023.

This article has been accepted for publication in IEEE Control Systems Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2024.3415471

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Wisconsin. Downloaded on June 18,2024 at 13:55:55 UTC from IEEE Xplore. Restrictions apply.

